Important role of PLC-γ1 in hypoxic increase in intracellular calcium in pulmonary arterial smooth muscle cells.

نویسندگان

  • Vishal R Yadav
  • Tengyao Song
  • Leroy Joseph
  • Lin Mei
  • Yun-Min Zheng
  • Yong-Xiao Wang
چکیده

An increase in intracellular calcium concentration ([Ca(2+)](i)) in pulmonary arterial smooth muscle cells (PASMCs) induces hypoxic cellular responses in the lungs; however, the underlying molecular mechanisms remain incompletely understood. We report, for the first time, that acute hypoxia significantly enhances phospholipase C (PLC) activity in mouse resistance pulmonary arteries (PAs), but not in mesenteric arteries. Western blot analysis and immunofluorescence staining reveal the expression of PLC-γ1 protein in PAs and PASMCs, respectively. The activity of PLC-γ1 is also augmented in PASMCs following hypoxia. Lentiviral shRNA-mediated gene knockdown of mitochondrial complex III Rieske iron-sulfur protein (RISP) to inhibit reactive oxygen species (ROS) production prevents hypoxia from increasing PLC-γ1 activity in PASMCs. Myxothiazol, a mitochondrial complex III inhibitor, reduces the hypoxic response as well. The PLC inhibitor U73122, but not its inactive analog U73433, attenuates the hypoxic vasoconstriction in PAs and hypoxic increase in [Ca(2+)](i) in PASMCs. PLC-γ1 knockdown suppresses its protein expression and the hypoxic increase in [Ca(2+)](i). Hypoxia remarkably increases inositol 1,4,5-trisphosphate (IP(3)) production, which is blocked by U73122. The IP(3) receptor (IP(3)R) antagonist 2-aminoethoxydiphenyl borate (2-APB) or xestospongin-C inhibits the hypoxic increase in [Ca(2+)](i). PLC-γ1 knockdown or U73122 reduces H(2)O(2)-induced increase in [Ca(2+)](i) in PASMCs and contraction in PAs. 2-APB and xestospongin-C produce similar inhibitory effects. In conclusion, our findings provide novel evidence that hypoxia activates PLC-γ1 by increasing RISP-dependent mitochondrial ROS production in the complex III, which causes IP(3) production, IP(3)R opening, and Ca(2+) release, playing an important role in hypoxic Ca(2+) and contractile responses in PASMCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Invited Review HIGHLIGHTED TOPIC Pulmonary Circulation and Hypoxia Hypoxic pulmonary vasoconstriction: role of ion channels

Mauban, Joseph R. H., Carmelle V. Remillard, and Jason X.-J. Yuan. Hypoxic pulmonary vasoconstriction: role of ion channels. J Appl Physiol 98: 415–420, 2005. doi:10.1152/japplphysiol.00732.2004.—Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electroand pharmacomechanical mechanis...

متن کامل

Oxygen-induced fetal pulmonary vasodilation is mediated by intracellular calcium activation of K(Ca) channels.

O(2) sensing in fetal pulmonary artery smooth muscle is critically important in the successful transition to air breathing at birth. However, the mechanism by which the fetal pulmonary vasculature senses and responds to an acute increase in O(2) tension is not known. Isolated fetal pulmonary artery smooth muscle cells were kept in primary culture for 5-14 days in a hypoxic environment (20-30 mm...

متن کامل

Hypoxic pulmonary vasoconstriction: role of ion channels.

Acute hypoxia induces pulmonary vasoconstriction and chronic hypoxia causes structural changes of the pulmonary vasculature including arterial medial hypertrophy. Electro- and pharmacomechanical mechanisms are involved in regulating pulmonary vasomotor tone, whereas intracellular Ca(2+) serves as an important signal in regulating contraction and proliferation of pulmonary artery smooth muscle c...

متن کامل

Physiology in medicine: importance of hypoxic pulmonary vasoconstriction in maintaining arterial oxygenation during acute respiratory failure

Hypoxic pulmonary vasoconstriction continues to attract interest more than half a century after its original report because of persistent mystery about its biochemical mechanism and its exact physiological function. Recent work suggests an important role for pulmonary arteriolar smooth muscle cell oxygen-sensitive voltage-dependent potassium channels. Inhibition of these channels by decreased P...

متن کامل

Implication of the ryanodine receptor in TRPV4-induced calcium response in pulmonary arterial smooth muscle cells from normoxic and chronically hypoxic rats.

There is a growing body of evidence indicating that transient receptor potential (TRP) channels are implicated in calcium signaling and various cellular functions in the pulmonary vasculature. The aim of this study was to investigate the expression, functional role, and coupling to reticulum calcium channels of the type 4 vanilloid TRP subfamily (TRPV4) in the pulmonary artery from both normoxi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Lung cellular and molecular physiology

دوره 304 3  شماره 

صفحات  -

تاریخ انتشار 2013